Convergion of iterations with error for a uniform Lipshic reflexion in conus metric space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Sequence Iterations for Strongly Contractive Mapping in Modular Space

In this paper, we consider double sequence iteration processes for strongly $rho$-contractive mapping in modular space. It is proved, these sequences, convergence strongly to a fixed point of the strongly $rho$-contractive mapping.

متن کامل

Hyperspace of a fuzzy quasi-uniform space

The aim of this paper is to present a fuzzy counterpart method of constructing the Hausdorff quasi-uniformity of a crisp quasi-uniformity. This process, based on previous works due to Morsi cite{Morsi94} and Georgescu cite{Georgescu08}, allows to extend probabilistic and Hutton $[0,1]$-quasi-uniformities on a set $X$ to its power set.  In this way, we obtain an endofunctor for each one of the c...

متن کامل

Fixed points for Chatterjea contractions on a metric space with a graph

In this work‎, ‎we formulate Chatterjea contractions using graphs in metric spaces endowed with a graph ‎‎and‏ ‎‎‎‎investigate ‎the ‎existence‎ ‎of ‎fixed ‎points ‎for such mappings ‎under two different hypotheses‎. We also discuss the uniqueness of the fixed point. The given result is a generalization of Chatterjea's fixed point theorem from metric spaces to metric spaces endowed with a graph.

متن کامل

A Uniform Lower Error Bound for Half-Space Learning

We give a lower bound for the error of any unitarily invariant algorithm learning half-spaces against the uniform or related distributions on the unit sphere. The bound is uniform in the choice of the target half-space and has an exponentially decaying deviation probability in the sample. The technique of proof is related to a proof of the Johnson Lindenstrauss Lemma. We argue that, unlike prev...

متن کامل

The minimum uniform compactification of a metric space

It is shown that associated with each metric space (X, d) there is a compactification udX of X that can be characterized as the smallest compactification of X to which each bounded uniformly continuous real-valued continuous function with domain X can be extended. Other characterizations of udX are presented, and a detailed study of the structure of udX is undertaken. This culminates in a topol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Zbornik radova Uciteljskog fakulteta Prizren-Leposavic

سال: 2014

ISSN: 1452-9343

DOI: 10.5937/zrufpl1408177p